Paper Id:

Roll No: \square

B. TECH.

(SEM I) THEORY EXAMINATION 2019-20
ENGINEERING MATHEMATICS -I
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

a.	Find y, if $\mathrm{y}=x \log x$.
b.	If $u(x, y)=\sqrt{x}+\bar{y}^{-}$, find the value of $x-+2 x y-+y-$.
c.	Calculate $\frac{(,)}{(,)}$ for $x=e \cos v$, and $y=e \sin v$.
d.	Prove that $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+$
e.	Find the rank of the matrix $\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 1\end{array}$.
f.	$\text { Find the inverse of the matrix } A=\begin{array}{ll} 3 & 1 \\ 2 & 1 . \end{array}$
g.	Evaluate $\quad x^{2}(1-x)^{3} d x$
h.	Evaluate $x d y d x$.
i.	Show that $\vec{F}=(x-y+x) \hat{g} \hat{\theta}(2 x y+y) \hat{j}$ is irrotational.
j.	State Gauss divergence theqem.

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$

a.	If $y=(\sin x)$, show that $(1-x) y \quad-(2 n+1) x y \quad-n y=0 \quad$ and calculate $y(0)$.
b.	Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $\quad-+$ $-+-=1$.
c.	Reduce the matrix $A=\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}$ to the diagonal form.
d.	Find the volume of the solid surrounded by the surface $-^{-}+{ }_{-}{ }^{-}+{ }_{-}^{-}=1$.
e.	Verify Stokes's theorem for $\overrightarrow{F:}=x \hat{\imath}+x y \hat{\jmath}$ integrated round the square whose sides are $x=0, y=$ $0, x=a, y=a$ in the plane $z=0$.

Paper Id:
Roll No: \square

SECTION C

3. Attempt any one part of the following:

a.	Trace the curve: $y^{2}(2 a-x)=x^{3}$
b.	If $u=\log (x+y+z-3 x y z)$, show that $(-+-+-) u=-\frac{1}{(\quad)}$.

4. Attempt any one part of the following:

10x1=10

a.	Expand tan -in the neighbourhood of (1,1) upto and inclusive of second-degree terms. Hence compute $f(1.1,0.9)$ approximately.
b.	If u, v, w are the roots of the equation $(x-a)+(x-b)+(x-c)=0$, then find $\frac{\partial(u, v, w)}{\partial(a, b, c) .}$

5. Attempt any one part of the following:

$10 x 1=10$

a.	Find the value of λ such that the following equations have unique solution: $\lambda x+2 y-2 z-1=0,4 x+2 \lambda y-z-2=0,6 x+6 y+\lambda z-3=0$ and use matrix method to solve these equations when $\lambda=2$.
b.	Verify Cayley-Hamilton theorem for the matrix $A=$1 2 2 -1 0 0

6.	Attempt any one part of the following:
a.	Show that in the Catenary y is given by $s=c$ sinh
b.	Evaluate

7. Attempt any one part of the following:

10x1=10

a.	Find the directional derivative of $\emptyset=5 x y-5 y z+z * \quad$ at the point $P(1,1,1)$ in the direction of the line $-=-=-$
b.	Apply Green's theorem to evaluate $\quad(2 x-y) d x+(x+y) d y$ where C is the boundary of the area enclosed by the $x-$ axis and upper half of the circle $x+y=a$.

